A regularization approach for estimating the type of a plane curve singularity
نویسندگان
چکیده
We address the algebraic problem of analysing the local topology of each singularity of a plane complex algebraic curve defined by a squarefree polynomial with both exact (i.e. integers or rationals) and inexact data (i.e. numerical values). For the inexact data, we associate a positive real number that measures the noise in the coefficients. This problem is ill-posed in the sense that tiny changes in the input produce huge changes in the output. We design a regularization method for estimating the local topological type of each singularity of a plane complex algebraic curve. Our regularization method consists of the following: (i) a symbolic-numeric algorithm that computes the approximate local topological type of each singularity; (ii) and a parameter choice rule, i.e. a function in the noise level. We prove that the symbolic-numeric algorithm together with the parameter choice rule computes an approximate solution, which satisfies the convergence for noisy data
منابع مشابه
A Mathematical Analysis of New L-curve to Estimate the Parameters of Regularization in TSVD Method
A new technique to find the optimization parameter in TSVD regularization method is based on a curve which is drawn against the residual norm [5]. Since the TSVD regularization is a method with discrete regularization parameter, then the above-mentioned curve is also discrete. In this paper we present a mathematical analysis of this curve, showing that the curve has L-shaped path very similar t...
متن کاملApplying Legendre Wavelet Method with Regularization for a Class of Singular Boundary Value Problems
In this paper Legendre wavelet bases have been used for finding approximate solutions to singular boundary value problems arising in physiology. When the number of basis functions are increased the algebraic system of equations would be ill-conditioned (because of the singularity), to overcome this for large $M$, we use some kind of Tikhonov regularization. Examples from applied sciences are pr...
متن کاملAnalysis of Multiple Yoffe-type Moving Cracks in an Orthotropic Half-Plane under Mixed Mode Loading Condition
The present paper deals with the mixed mode fracture analysis of a weakened orthotropic half-plane with multiple cracks propagation. The orthotropic half-plane contains Volterra type glide and climb edge dislocations. It is assumed that the medium is under in-plane loading conditions. The distributed dislocation technique is used to obtain integral equations for the dynamic problem of multiple ...
متن کاملDegree Reduction of Disk Wang-Bézier Type Generalized Ball Curves
A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...
متن کاملDegree Reduction of Disk Wang-Bézier Type Generalized Ball Curves
A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 479 شماره
صفحات -
تاریخ انتشار 2013